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We describe a method for estimating rate constants of a two-state Markov system from data obtained by a
single-molecule (SM) type of experiment corrupted by white noise. The method is effective even when the
characteristic (or resolution) time of the measurement is much longer than a characteristic time of the two-
state system, and the data are uncorrelated. We apply our suggested method to data from an SM experiment
on the transport of sugar molecules through cell membrane channels. The method is quite accurate in analyzing
this set of data. We also demonstrate that in some cases the method can be used to check whether the system
is Markovian or not.

1. Introduction

Recent successes in experimentally observing the behavior
of single molecules,1-6 enables one to study dynamic properties
of a system without perturbing it from its equilibrium state. This
cannot be done using traditional bulk measurements, in which
one perturbs the system and then observes the decay to the
equilibrium state. There is a significant difference between bulk
and single-molecule (SM) experiments. The first of these deals
with ensemble averages while the second monitors the behavior
of single molecules out of the ensemble and provides a time
average of some observable for a given “trajectory” of the
molecule. Different realizations of the SM trajectory will
produce different values of the time average. Repetition of the
experiment a number of times provides an estimate of the
probability density of the time average. Because of the property
of ergodicity this density must approach a delta function form
centered at the value of the bulk average as the time interval
used in averaging tends to infinity. When the measurement time
is finite, the density estimate will differ from the delta function
form, thereby providing additional information to estimate
dynamical properties of the system.

It is worth noting that different realizations of SM trajectories
can be found from measurements on different molecules
randomly chosen from the ensemble or can be different pieces
of a long trajectory produced by a single molecule. In the first
case the averages will not be correlated, while in the second
case they will be. These correlations can be exploited to gain
information about properties of the dynamics. Standard tech-
niques for analyzing data from a single realization of a stochastic
process are based on correlation or spectral analysis.

The time interval used in averaging, the resolution time of
the SM measurement, is an important parameter that potentially
restricts the applicability of spectral analysis. Spectral analysis
is useful when the dynamics of interest are slow in the sense

that its characteristic time is larger than the resolution time.7,8

However, when the system dynamics are fast and its charac-
teristic time is shorter than the resolution time, spectral analysis
will fail because data obtained from a single trajectory will be
almost uncorrelated.

In this paper we describe a method for estimating the rate
constants of a two-state Markovian system that is effective even
when the data are completely uncorrelated. This is done in the
following section where we also discuss the sampling error
inherent in these estimates. A demonstration of its efficiency
will be given in section 3 by applying it to data from an SM
experiment on the transport of sugar molecules through cell
membrane channels.9 In this experiment a single trimeric
maltoporin channel is used to observe the passage of single sugar
molecules. When a sugar molecule is in the channel, the current
through the trimer decreases.

Our approach to the estimation of rate constants for two-
state Markovian systems can, in some cases, allow one to check
the correctness of the assumption that the experimental system
is Markovian. Simulations relating to this point are given in
section 4.

2. Mathematical Framework

We analyze a system whose dynamics are defined by random
transitions between two states, 1 and 2, so that the trajectory of
the system can be described as an alternating sequence of
sojourns in the two states. Letψi(t) be the probability density
for a single sojourn time in statei. When the system is
Markovian, so thatψi(t) ) kie-kit, i ) 1, 2, where theki are rate
constants, it can be described by the simple scheme

In a SM experiment a physical observable of the system is
measured for timeT. For single-channel recordings the observ-
able is the measured current. LetIi be the intensity of this
observable when the system is in the statei. In addition, one
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records noise that has to be taken into account. We can model
this process as

whereIdic(t) is a dichotomic process randomly taking the values
I1 andI2, andê(t) is zero-mean Gaussian white noise,δ-function
correlated and independent ofIdic(t). The parameterD is the
amplitude of this noise term.

If the resolution time of the device is∆t, the currentIn(∆t)
measured at timetn ) n∆t is

The first term on the right-hand side of this equation is related
to the fraction of time, out of the total time∆t, that the system
has been in state 1. This fraction will be written asxn(∆t). The
termê(t) dt is the differential of the Wiener process, which we
express asê(t) dt ) dW(t). Therefore, we can write

where∆I ) I1 - I2 and∆Wn ≡ W(tn) - W(tn-1). The Wiener
process is characterized by the properties (i) the increments are
all independent, (ii) the increments have a Gaussian distribution,
and (iii) the first moment of∆Wn is equal to zero and the second
moment, is〈∆Wn

2〉 ) ∆t. Under these conditions it is possible
to calculate the moments ofI(∆t) from (2.4). The first moment
and variance can be written as

We therefore have a relation between the average and variance
of the observed currentI(∆t) and the fraction of time out of∆t
that the system has spent in state 1.

Expressions for the moments ofx(∆t) can be derived from
results obtained in refs 10 and 11. These can be used to estimate
the two rate constants. For the first moment we can write

wherek ≡ k1 + k2 andp1
eq is the equilibrium probability for the

system to be in state 1. The theoretical expression for the
variance is10,11

wherep2
eq ≡ 1 - p1

eq. Since we are primarily interested in the
limit of bad resolution, which means that∆t is greater than the
characteristic time of the process,k-1, we can use an asymptotic
form of eq 2.8

Values ofk∆t of the order of 10 or more generally suffice to
validate this approximation.

The parameters needed to findk1 andk2 arep1
eq andσx

2(∆t).
These, together with the relations in eqs 2.7 and 2.9 provide
estimates of the rate constants. We need the following informa-
tion to do so: the intensities of the current in the two states,I1

andI2; the intensity of the noise,D; and the experimental series
{In(∆t)} wheren ) 1, ..., N with N ) T/∆t. The estimates of
the first moment and variance are given by the standard formulas

where the overbars denote estimates. WhileIh(∆t) is an unbiased
estimate of the current, that is〈Ih(∆t)〉 ≡ Ieq ) I2 + ∆Ip1

eq, the
estimator of the variance,σj2

I(∆t), is unbiased only to terms of
order [N(k∆t)2]-1. Because it has been assumed that bothk∆t
and N are much greater than 1, this lower-order contribution
will be neglected. Using the results of eqs 2.5 and the asymptotic
behavior 2.9, we can write

and

The individual rate constants can be expressed in terms ofk
andp1

eq as

The replacement ofIeq andσI
2(∆t) in eqs 2.12 and 2.13 by their

estimatesIh(∆t) and σj1
2(∆t) allows one to estimatek and p1

eq

and finally theki.
We now characterize the sampling errors in the estimates of

p1
eq and k due to the finite total number of observations.

Consider first the error in the estimate ofp1
eq. SinceIh(∆t) is just

the current sampled at the timeN∆t, it follows that Ih(∆t) )
I(N∆t). Therefore, the variance ofIh(∆t) is

Combining this result with eq 2.6 we find an expression for
the standard deviation ofp1

eq which we denote byσ[pj1
eq]:

A somewhat more elaborate calculation of the standard deviation
for the estimatekh yields the approximate expression12

To finish the theoretical analysis, we examine the question of
determining whether the data are consistent with the assumption

I(t) ) Idic(t) + D1/2ê(t) (2.2)

In(∆t) ) 1
∆t∫tn-1

tn I(t) dt ) 1
∆t∫tn-1

tn Idic(t) dt + D1/2

∆t ∫tn-1

tn ê(t) dt

(2.3)

In(∆t) ) I2 + xn(∆t)∆I + D1/2

∆t
∆Wn (2.4)

〈I(∆t)〉 ) I2 + 〈x(∆t)〉∆I (2.5)

σI
2(∆t) ) ∆I2σx

2(∆t) + D
∆t

(2.6)

〈x(∆t)〉 ) p1
eq )

k2

k
(2.7)

σx
2(∆t) )

2p1
eq p2

eq

k∆t [1 - 1
k∆t

(1 - e-k∆t)] (2.8)

σx
2(∆t) ≈ 2p1

eq p2
eq

k∆t
(2.9)

Ih(∆t) )
1

N
∑
n)1

N

In(∆t) (2.10)

σjI
2(∆t) )

1

N-1
∑
n)1

N

[In(∆t) - Ih(∆t)]2 (2.11)

p1
eq )

Ieq - I2

∆I
(2.12)

k )
2(I1 - Ieq)(Ieq - I2)

σI
2(∆t)∆t - D

(2.13)

k1 ) (1 - p1
eq)k k2 ) p1

eqk (2.14)

σI
2 ) σI

2(N∆t) (2.15)

σ[pj1
eq] ) xσx

2(N∆t) + D

N∆t∆I2
(2.16)

σ(kh) ≈ kx2
N{1+

(∆I)2 - 5(I1 - Ieq) (Ieq - I2)

2(I1 - Ieq)(Ieq - I2)k∆t
+

O( 1

[k∆t]2)} (2.17)

Rate Constants from Uncorrelated Single-Molecule Data J. Phys. Chem. B, Vol. 105, No. 26, 20016247



that the system is Markovian or not.13 A solution for the
probability density of the fraction of time that the system spends
in one of the states of a two-state Markovian system has been
derived in ref 10. Letp(x|∆t|) be the probability density for the
fraction of time spent in state 1. This function has been shown
to be

wherey ≡ 2k∆txp1
eqp2

eqx(1-x) andI0(y) andI1(y) are modified
Bessel functions of order 0 and 1.14 Using p(x|∆t) and taking
into account the fact that the noise term in eq 2.2 represents
Gaussian white noise, one can calculate the probability density
for the random currentI(∆t) by

The last step in the analysis, whether the system is Markovian
or not, is to compare the experimental probability density
obtained directly from the set of data with the theoretical result
in this equation, replacing the rate constants by their estimates.

3. Analysis of Experimental Data

The SM experiments whose data have been analyzed are able
to resolve single sugar molecule translocation through a single
transmembrane protein channel.9 From these high-resolution
measurements of the channel conductance it has been found
that, at low sugar concentrations, sugar binding is a two-state
Markovian process in which the channel is partly blocked when
a single sugar molecule is found in the channel. Two experi-
ments, differing in duration (463 and 163 s) were run, with
results as described below.

In generating the data shown in the inset of Figure 1, we
used a low sugar concentration (1µm maltohexaose) to induce
transient blocking of ionic conductance of a single maltoporin

channel reconstituted in a bilayer membrane formed from
dioleoylphosphatidylcholine. The membrane bathing aqueous
solution contained 1 M KCl, 1 mM CaCl2 and 10 mM Tris at
pH 7.4. Conductance recordings were obtained at a 200 mV
membrane potential difference, positive from the side of protein
addition. The original sampling frequency was 50 kH, and the
resampling to produce the data shown in Figure 1 was performed
by data averaging over consecutive intervals of 30 ms.

We have created nearly completely uncorrelated data sets by
resampling high-resolution recordings of channel conductance
using a resolution time much longer than the characteristic
correlation time of the system. Figure 1 shows the averaged
data (in the inset) as well as the correlation function calculated
from the raw data. The falloff in this function as a function of
dimensionless time is evident. A comparison of the estimates
obtained from two experiments is shown in the Table 1, which
was produced using the method outlined above, where the error
estimates have been calculated using (2.16) and (2.17). The
terms after the( signs have been set equal to 3σj since the
distribution function is essentially Gaussian.

The two rate constants for both experiments are in good
agreement with rate constants found by conventional spectral
analysis applied to high resolution data.9 Using subsets of the
two experiments taken with high-resolution data of 10 s duration,
we foundk1 ) (3.38 ( 0.44) × 10-2 ms-1 andk2 ) 1.17 (
0.15 ms-1 for the longer experiment. For the shorter experiment
the rate constants were found to bek1 ) (3.56( 0.48)× 10-2

ms-1 andk2 ) 1.15 ( 0.16 ms-1. We used the parameters in
Table 1 to calculate the probability density of the current for
two experiments according to eq 2.19. Figures 2 and 3 compare

Figure 1. Set of experimental data{In(∆t)} from the ion channel
experiment (inset) sampled at∆t ) 30 ms, together with the normalized
autocorrelation function calculated from it. The point to notice is that
the autocorrelation function drops to a value essentially equal to zero
very rapidly, which would vitiate the use of a spectral analysis. The
experimental data were first sampled at a rate of 50 kHz and then
resampled over consecutive intervals lasting 30 ms.

p(x|∆t) ) p1
eqe-k1∆tδ(x-1) + p2

eqe-k2∆tδ(x) + {2p1
eq p2

eqk∆t ×

I0(y) +
p1

eqx + p2
eq(1-x)

2x(1 - x)
yI1(y)}e-(p2

eqx+p1
eq(1-x))k∆t (2.18)

g(I|∆t) ) ∆t
2πD∫0

1
p(x|∆t)e-(∆t/2D)(I-I2-∆Ix)2

dx (2.19)

Figure 2. Comparison of the estimate of the probability density
obtained from the data in Figure 1 from experiment 1 (463 s) with the
theoretical expression in (2.19). The circles in this and the following
figure are found from the data. The thin line is drawn through the centers
of the circles. The thicker line is generated from the theoretical
expression in (2.19) for the same values of the current used in
representing experimental results.

TABLE 1: Rate Constants Found Using Data for Two
Monitoring Times

exp 1 (T ) 463 s) exp 2 (T ) 163 s)

I1 (pA) 62.90 60.67
I2 (pA) 42.19 41.67
D (msec× pA2) 0.19 0.19
p1

eq 0.970( 0.001 0.968( 0.002
k1 (ms-1) (3.34( 0.16)× 10-2 (3.07( 0.25)× 10-2

k2 (ms-1) 1.07( 0.05 0.93( 0.07
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the experimental and theoretical probability densities, showing
good agreement between theory and experiment.

4. A Test of the Markov Property

In the previous section we found that our suggested procedure
works well in estimating the rate constants for a two-state
Markov system from nearly uncorrelated data. We also found
good agreement between the predicted probability density for
the current with the density estimated from the data. This
suggests the further problem of whether a lack of agreement
between data and the theoretical result found from eq 2.19 can
be used to distinguish between a two-state Markov system and
a two-state non-Markov system. The latter case indicates a more
complicated reaction scheme than that in eq 2.1.15 This
possibility was tested using simulated data. Accordingly, a set
of data, {In(∆t)}, was generated using most of the same
parameters as the experimentally determined ones summarized
in Table 1. In generating the data, we inserted the same
resolution time, the same observation time, the same intensities
I1 and I2, and the same intensity of the white noise term. We
also assumed that the kinetics of the reaction 1f 2 was first-
order with the same value ofk1 as in Table 1 for the longer
experiment. For the reaction 2f 1 we used three different non-
Markovian probability densities,ψ2(t), having the common
property that the mean lifetime is equal tok2

-1 wherek2 is the
rate constant given in Table 1 for the longer experiment. The
three densities used in the simulations are

For each of the densities we generated a set of currents
{In(∆t)} following which we applied the procedure described
in section 2 to derive two rate constants under the assumption
that the system is Markovian. These rate constants were then
used to calculate the probability densityg(I|∆t) according to
the relation in eq 2.19. To check whether the system is

Markovian or not, we comparedg(I|∆t) with the corresponding
histogram obtained from the data set{In(∆t)}. The simulations
produced results shown in Figure 4, where it is seen that there
are noticeable discrepancies from the prediction based on eq
2.19 for ψ2

(b)(t) and ψ2
(c)(t) whereas forψ2

(a)(t) the results are
relatively close to the theoretical prediction in the single
exponential case. The curves in Figure 4 make the obvious point
that when the functional form forψ2(t) is not close to a negative
exponential (cases b and c) it is possible to distinguish between
Markovian and non-Markovian systems.

5. Conclusions

In this paper we have presented a method for obtaining rate
constants of a two-state Markovian system from SM type
experiments when the resolution is so bad that the time
correlations are lost. We have shown that in such situations it
is still possible to get the rate constants with good accuracy
even when the data set of time averages is randomized.
Moreover, in some cases, it is possible to distinguish between
Markovian and non-Markovian systems.

Acknowledgment. L.K. gratefully acknowledges support by
the Swedish Foundation for International Cooperation in
Research and Higher Education.

Figure 3. Same comparison for experiment 2 (163 s). In both cases
the agreement is seen to be quite good. Notice that the probability
density is still quite far from the asymptotic Gaussian limit.

ψ2
(a)(t) ) 3

8
k2[exp(-

3k2

4
t) + 2 exp(-

3k2

2
t)]

ψ2
(b)(t) ) π

2
k2

2t exp(-
πk2

2

4
t2)

ψ2
(c)(t) ) xk2

2t
exp(- x2k2t) (4.2)

Figure 4. Comparison of estimates of the probability density obtained
by using the three forms ofψ2

(i)(t), i ) a, b, c in (4.2). The density
found from the data is given by the circles, while the solid line is the
density calculated from eq 2.19. The first of these produces an estimate
quite close to that found by using eq 2.19 and does not suggest that
one could distinguish between these results and those produced by a
true two-state Markov system, while the remaining two do suggest a
deviation from this type of system. The three probability densities in
eq 4.2 are shown in the insets plotted as a function of the time in
milliseconds.
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